计算机信息工程学院转专业 高级语言程序设计（C 语言）考试大纲
一、考试目标
本考试旨在检验转专业学生对 C 语言的基本语法、程序设计思想、常用算法及实际编程应用的掌握程度，确保学生具备进入计算机专业后进一步学习专业课程（如数据结构、操作系统、计算机组成原理等）所需的 C 语言编程基础能力，具体要求如下：
1. 熟练掌握 C 语言的语法规则，能够准确识别和书写合法的 C 语言代码。
1. 理解 C 语言的程序设计思想，包括结构化程序设计（顺序、选择、循环结构），能够运用该思想分析和设计简单的程序。
1. 掌握 C 语言中常用的数据类型、运算符、表达式及函数的定义与调用方法，能够解决基本的数值计算和数据处理问题。
1. 理解指针、数组、结构体等复杂数据类型的概念与应用，能够运用它们实现较为复杂的数据存储和操作。
1. 掌握文件操作的基本方法，能够实现数据的读写与保存。
1. 具备基本的程序调试能力，能够识别和修正程序中的语法错误和逻辑错误。
二、考试内容
（一）C 语言基础知识
1. C 语言概述
0. C 语言的发展历程、特点及应用领域（如系统开发、嵌入式编程等）。
0. C 语言程序的基本结构（包含头文件、主函数、函数体等），掌握#include头文件包含指令的作用与使用方法，理解main()函数的特殊地位（程序入口）。
0. C 语言程序的编译与执行过程（预处理、编译、汇编、链接四个阶段），了解常见的编译器（如 GCC、VC++）及使用方式。
7. 数据类型、常量与变量
0. 基本数据类型：整型（int、short、long、long long）、字符型（char）、实型（float、double），掌握各类型的存储大小、取值范围及表示方法。
0. 常量：字面常量（如123、'a'、"hello"）、符号常量（#define定义），理解常量的不可修改性及使用场景。
0. 变量：变量的定义（类型 + 变量名）、初始化（定义时赋值）与赋值（定义后赋值），掌握变量的作用域（局部变量、全局变量）和生命周期，理解变量命名规则（字母、数字、下划线组成，首字符不能为数字，区分大小写）。
8. 运算符与表达式
0. 算术运算符（+、-、*、/、%）及算术表达式，掌握整数除法与浮点除法的区别，%运算符的使用条件（操作数为整型）。
0. 赋值运算符（=、+=、-=、*=、/=、%=）及赋值表达式，理解赋值运算的右结合性。
0. 自增自减运算符（++、--），掌握前缀（先运算后取值）与后缀（先取值后运算）的区别及使用注意事项（避免在同一表达式中多次使用）。
0. 关系运算符（>、、==、!=）及关系表达式，理解关系表达式的结果为逻辑值（1表示真，0` 表示假）。
0. 逻辑运算符（&&、||、!）及逻辑表达式，掌握短路求值规则（&&前为假则后续不计算，||前为真则后续不计算）。
0. 条件运算符（?:）及条件表达式，理解其 “表达式 1？表达式 2：表达式 3” 的语法结构及运算规则，能够替代简单的if-else语句。
0. 运算符的优先级与结合性，能够正确判断复杂表达式的运算顺序。
（二）结构化程序设计
1. 顺序结构
0. 顺序结构的执行流程（自上而下依次执行），掌握基本输入输出函数的使用。
0. 输入函数：scanf()函数（格式控制字符串 + 变量地址列表），掌握常见格式说明符（%d、%c、%f、%lf等），理解输入时的格式匹配问题（如空格、回车对%c输入的影响）；getchar()函数（读取单个字符）。
0. 输出函数：printf()函数（格式控制字符串 + 输出项列表），掌握格式说明符的使用（如%5d表示占 5 位右对齐输出整数，%.2f表示保留 2 位小数输出浮点数）；putchar()函数（输出单个字符）。
10. 选择结构
0. if语句：单分支（if(表达式){语句块}）、双分支（if(表达式){语句块1}else{语句块2}）、多分支（if(表达式1){语句块1}else if(表达式2){语句块2}...else{语句块n}），掌握if语句的嵌套使用规则（注意else与if的配对关系，建议使用大括号明确语句块范围）。
0. switch语句：语法结构（switch(表达式){case 常量表达式1:语句块1;break;...case 常量表达式n:语句块n;break;default:语句块n+1;break;}），掌握switch表达式的类型（只能是整型或字符型），case常量表达式的唯一性，break语句的作用（跳出switch语句）及default子句的使用场景（处理所有未匹配的情况）。
11. 循环结构
0. while循环：语法结构（while(表达式){循环体语句块}），掌握循环执行流程（先判断表达式，为真则执行循环体，重复该过程直到表达式为假），理解循环条件的设置（避免死循环）。
0. do-while循环：语法结构（do{循环体语句块}while(表达式);），掌握其与while循环的区别（先执行一次循环体，再判断表达式，至少执行一次循环）。
0. for循环：语法结构（for(初始化表达式;条件表达式;更新表达式){循环体语句块}），掌握三个表达式的作用（初始化循环变量、判断循环条件、更新循环变量），理解for循环的灵活性（如省略部分表达式，但分号不能省略）。
0. 循环嵌套：掌握while、do-while、for循环之间的嵌套使用（如二重循环实现矩阵输出、乘法表打印等），理解嵌套循环的执行流程（外层循环执行一次，内层循环执行一轮）。
0. 循环控制语句：break语句（跳出当前循环）、continue语句（跳过本次循环剩余部分，进入下一次循环），掌握两者的区别及使用场景；goto语句（不推荐使用，了解其语法及潜在问题）。
（三）数组
1. 一维数组
0. 一维数组的定义（类型 数组名[数组长度];），掌握数组长度的定义规则（必须是常量表达式，不能为变量），理解数组元素的存储方式（连续的内存空间，下标从0开始）。
0. 一维数组的初始化：完全初始化（给所有元素赋值，可省略数组长度）、部分初始化（给前 n 个元素赋值，剩余元素默认为0（整型）0.0（实型）‘\0’(字符型）），掌握数组元素的引用（数组名[下标]）及赋值操作。
0. 一维数组的应用：实现数值统计（如求最大值、最小值、平均值）、排序（如冒泡排序、选择排序）、查找（如顺序查找）等常见算法。
13. 二维数组
0. 二维数组的定义（类型 数组名[行长度][列长度];），理解二维数组的存储结构（按行优先顺序存储，可看作是 “数组的数组”）。
0. 二维数组的初始化：按行初始化（int a[2][3]={{1,2,3},{4,5,6}};）、按顺序初始化（int a[2][3]={1,2,3,4,5,6};）、部分初始化（未赋值元素默认为0），掌握二维数组元素的引用（数组名[行下标][列下标]）。
0. 二维数组的应用：实现矩阵的输入输出、矩阵加法、矩阵乘法等操作。
14. 字符数组与字符串
0. 字符数组的定义与初始化（char str[10];、char str[10]={'h','e','l','l','o','\0'};、char str[10]="hello";），理解字符串结束标志（'\0'）的作用（区分字符数组与字符串）。
0. 字符串处理函数：strlen()（计算字符串长度，不包含'\0'）、strcpy()（字符串复制，注意目标数组容量足够）、strcat()（字符串拼接，注意目标数组容量足够）、strcmp()（字符串比较，按 ASCII 码值比较，返回正、负、零值分别表示大于、小于、等于），掌握这些函数的头文件（string.h）及使用方法，理解函数使用中的安全问题（如避免缓冲区溢出）。
0. 字符串的输入输出：scanf("%s",str)（读取字符串，遇空格、回车结束）、printf("%s",str)（输出字符串，遇'\0'结束）；gets()（读取整行字符串，包含空格，已被弃用，了解即可）、puts()（输出字符串并换行），掌握不同输入输出方式的区别及适用场景。
（四）函数
1. 函数的基本概念与定义
0. 函数的分类：库函数（如printf()、scanf()，需包含对应头文件）、自定义函数，理解函数的作用（模块化程序设计，提高代码复用性和可读性）。
0. 函数的定义：语法结构（返回值类型 函数名(参数列表){函数体语句块;return 返回值;}），掌握返回值类型（void表示无返回值）、参数列表（形参的类型和名称，无参数时可写void或空）、函数体（实现函数功能的代码）及return语句的作用（返回值给调用者，结束函数执行）。
16. 函数的调用与参数传递
0. 函数的调用：语法（函数名(实参列表);），掌握函数调用的过程（程序跳转到函数入口，执行函数体，执行完后返回调用处继续执行），理解实参和形参的关系（实参是调用时传递给形参的值，形参是函数定义时的参数，两者类型需匹配，个数需一致）。
0. 参数传递方式：值传递（实参将值赋给形参，形参的修改不影响实参），掌握值传递的特点及适用场景；了解地址传递（后续指针部分详细讲解）。
0. 函数的声明：语法（返回值类型 函数名(参数列表);），理解函数声明的作用（告诉编译器函数的存在，解决函数定义在调用之后的问题），掌握函数声明的位置（可在主函数前或主函数内通过头文件包含）。
17. 函数的嵌套与递归
0. 函数的嵌套调用：掌握在一个函数中调用另一个函数的方法，理解嵌套调用的执行流程（调用函数 A，A 中调用函数 B，B 执行完返回 A，A 执行完返回主函数）。
0. 函数的递归调用：掌握递归的定义（函数调用自身），理解递归的条件（存在递归终止条件，递归表达式逐步逼近终止条件），能够实现简单的递归函数（如求阶乘、斐波那契数列、汉诺塔问题），了解递归的优缺点（代码简洁，但可能存在栈溢出、效率低的问题）。
18. 变量的存储类别
0. 自动变量（auto，默认）：存储在栈区，作用域为局部，生命周期为函数调用期间，每次调用重新初始化。
0. 静态变量（static）：存储在静态区，局部静态变量作用域为局部，生命周期为整个程序运行期间，只初始化一次；全局静态变量作用域为当前文件，生命周期为整个程序运行期间。
0. 外部变量（extern）：用于声明其他文件中的全局变量，实现跨文件变量共享。
0. 寄存器变量（register）：建议编译器将变量存储在寄存器中，提高访问速度，了解其使用限制（不能取地址，类型需为简单类型）。
（五）指针
1. 指针的基本概念
0. 地址与指针：理解内存地址的概念（内存单元的编号），指针的定义（指针是存储地址的变量，即指针变量）。
0. 指针变量的定义：语法（类型 *指针变量名;），掌握指针变量的类型（与所指向变量的类型一致），理解*的作用（声明指针变量时表示 “指针类型”，使用指针变量时表示 “解引用”，即访问指针所指向的变量）。
0. 指针变量的初始化与赋值：初始化（int a=10; int *p=&a;，&为取地址运算符），赋值（int b=20; p=&b;），掌握NULL指针（int *p=NULL;，表示指针不指向任何有效内存）的概念及使用。
20. 指针与变量、数组的关系
0. 指针与变量：通过指针访问变量（*p = 30;，修改指针所指向变量的值），掌握指针的加减运算（p++、p--，移动的字节数等于指针所指向类型的大小）。
0. 指针与一维数组：理解数组名的本质（数组首元素的地址，是常量），掌握通过指针访问数组元素的方法（*(p+i)与a[i]等价，p为指向数组首元素的指针），理解指针在数组遍历中的应用（如for(p=a;p遍历数组a[5]）。
0. 指针与二维数组：理解二维数组名的本质（二维数组首行的地址），掌握通过指针访问二维数组元素的方法（如*(*(p+i)+j)与a[i][j]等价，p为指向二维数组首行的指针），了解行指针（int (*p)[3];，指向包含 3 个int元素的数组）的概念。
21. 指针与函数
0. 指针作为函数参数：掌握地址传递的方式（将变量地址传给指针形参，形参的修改会影响实参），能够通过指针参数实现函数返回多个值（如同时返回最大值和最小值）。
0. 指针作为函数返回值：掌握返回指针的函数定义（类型 *函数名(参数列表);），理解返回指针的注意事项（不能返回局部变量的地址，可返回静态变量、全局变量或动态分配内存的地址）。
0. 指向函数的指针：了解指向函数的指针定义（返回值类型 (*指针变量名)(参数列表);），理解其作用（实现函数的动态调用，如作为函数参数传递）。
22. 指针数组与多级指针
0. 指针数组：定义（类型 *数组名[数组长度];，数组元素为指针），掌握指针数组的应用（如存储多个字符串的首地址，实现字符串的排序）。
0. 多级指针：定义（类型 **指针变量名;，指向指针的指针），了解多级指针的使用场景（如处理指针数组、函数参数传递中需要修改指针变量的值），掌握简单的多级指针操作（如**pp = 10;，pp为二级指针，指向一级指针p，p指向变量a，则该语句修改a的值为10）。
（六）结构体与共用体
1. 结构体
0. 结构体类型的定义：语法（struct 结构体名{成员类型1 成员名1;成员类型2 成员名2;...};），理解结构体的作用（将不同类型的数据组合成一个整体，描述复杂的数据结构）。
0. 结构体变量的定义与初始化：定义（struct 结构体名 变量名;、struct 结构体名 变量名={成员值1,成员值2,...};），掌握结构体变量成员的引用（变量名.成员名，指针指向结构体变量时用指针名->成员名）。
0. 结构体数组：定义（struct 结构体名 数组名[数组长度];），掌握结构体数组的初始化与成员访问（如struct Student stu[2]={{101,"Tom",90},{102,"Jerry",85}};，stu[0].name访问第一个学生的姓名）。
0. 结构体指针：定义（struct 结构体名 *指针名;），掌握通过结构体指针访问成员的方法（指针名->成员名或(*指针名).成员名），理解结构体指针在函数参数传递中的应用（提高传参效率，避免结构体变量的拷贝）。
0. 结构体的嵌套：掌握结构体成员为另一个结构体类型的定义与访问（如struct Date{int year;int month;int day;}; struct Student{int id;char name[20];struct Date birth;};，stu.birth.year访问学生的出生年份）。
24. 共用体
0. 共用体类型的定义：语法（union 共用体名{成员类型1 成员名1;成员类型2 成员名2;...};），理解共用体的特点（所有成员共享同一块内存空间，内存大小为最大成员的大小，同一时间只能有一个成员有效）。
0. 共用体变量的定义与使用：定义（union 共用体名 变量名;），掌握共用体成员的引用（与结构体类似，变量名.成员名或指针名->成员名），了解共用体的应用场景（如节省内存空间，处理不同类型的同一块数据）。
25. 枚举类型
0. 枚举类型的定义：语法（enum 枚举名{枚举常量1,枚举常量2,...};），理解枚举常量的取值（默认从0开始依次递增，可显式赋值）。
0. 枚举变量的定义与使用：定义（enum 枚举名 变量名;），掌握枚举变量的赋值（只能赋值为枚举常量），了解枚举类型的应用场景（提高代码可读性，限制变量的取值范围）。
（七）文件操作
1. 文件的基本概念
0. 文件的分类：文本文件（以 ASCII 码形式存储，可直接阅读）、二进制文件（以二进制形式存储，不可直接阅读，存储效率高），理解文件指针的概念（FILE *fp，指向文件结构体，用于操作文件）。
1. 文件的打开与关闭
0. 文件的打开：fopen()函数，语法（FILE *fopen(const char *filename, const char *mode);），掌握常见的打开模式（"r"只读、"w"只写（覆盖）、"a"追加、"rb"二进制只读、"wb"二进制只写、"ab"二进制追加等），理解打开失败的原因（文件不存在、权限不足等）及判断方法（if(fp==NULL){printf("打开失败\n");exit(1);}）。
0. 文件的关闭：fclose()函数，语法（int fclose(FILE *fp);），理解关闭文件的作用（释放文件指针，避免资源泄漏，确保数据写入磁盘）。
28. 文件的读写操作
0. 文本文件读写：fscanf()（按格式从文件读取数据，fscanf(fp,"%d%s",&a,str);）、fprintf()（按格式向文件写入数据，fprintf(fp,"%d %s",a,str);）；fgetc()（从文件读取单个字符，char ch=fgetc(fp);）、fputc()（向文件写入单个字符，fputc(ch,fp);）；fgets()（从文件读取一行字符串，fgets(str,100,fp);）、fputs()（向文件写入字符串，fputs(str,fp);），掌握这些函数的返回值及使用方法。
0. 二进制文件读写：fread()（从文件读取二进制数据，fread(buffer,size,count,fp);，buffer为数据存储地址，size为单个数据大小，count为数据个数）、fwrite()（向文件写入二进制数据，fwrite(buffer,size,count,fp);），理解二进制读写与文本读写的区别（二进制读写更高效，适合存储结构体、数组等复杂数据）。
29. 文件的定位与状态判断
0. 文件定位：fseek()函数（移动文件指针，fseek(fp, offset, origin);，origin为起始位置（SEEK_SET文件开头、SEEK_CUR当前位置、SEEK_END文件末尾），offset为偏移量）；rewind()函数（将文件指针移到文件开头，rewind(fp);）；ftell()函数（获取当前文件指针位置，long pos=ftell(fp);），掌握文件定位函数的应用（如随机读写文件）。
0. 状态判断：feof()函数（判断文件是否结束，if(feof(fp)){printf("文件结束\n");}）；ferror()函数（判断文件操作是否出错，if(ferror(fp)){printf("操作出错\n");}），掌握这些函数的使用场景（如循环读取文件直到结束）。
（八）预处理命令
1. 宏定义
0. 无参数宏定义：#define 宏名 宏体（如#define PI 3.14159），理解宏替换的过程（预处理阶段将宏名替换为宏体，不进行语法检查），掌握宏定义的注意事项（宏体为表达式时建议加括号，避免优先级问题；宏定义末尾无分号）。
0. 带参数宏定义：#define 宏名(参数列表) 宏体（如#define MAX(a,b) ((a)>(b)?(a):(b))），理解带参数宏的替换过程（将实参替换到宏体中），掌握其与函数的区别（宏替换不占用运行时间，无类型检查；函数调用占用运行时间，有类型检查）。
31. 文件包含
0. #include "文件名"（先在当前源文件所在目录查找头文件，找不到再到系统标准目录查找）、#include <文件名>（直接到系统标准目录查找头文件），理解文件包含的作用（将头文件的内容插入到当前文件中，实现代码复用），掌握头文件的编写规则（避免重复包含，可使用条件编译或#pragma once）。
32. 条件编译
0. #if 常量表达式 #elif 常量表达式 #else #endif（根据常量表达式的值决定编译哪部分代码）；#ifdef 宏名 #else #endif（如果宏已定义，则编译 #ifdef 部分，否则编译 #else 部分）；#ifndef 宏名 #else #endif（如果宏未定义，则编译 #ifndef 部分，否则编译 #else 部分），掌握条件编译的应用场景（实现代码的跨平台兼容性、屏蔽调试代码等）。
三、考试试卷结构
1. 选择题
0. 考查内容：C 语言基础知识（数据类型、运算符、表达式）、结构化程序设计（选择、循环语句）、数组、函数、指针、结构体、文件操作等知识点的概念理解与简单应用。
34. 填空题
0. 考查内容：C 语言语法规则的细节（如运算符优先级、数组下标、函数参数传递、指针操作、文件打开模式等）、程序代码的填空（补充关键语句使程序实现指定功能）。
35. 程序分析题
0. 考查内容：阅读给定的 C 语言代码，分析程序的执行流程，写出程序的输出结果或指出程序的功能。
36. 程序填空题
0. 考查内容：根据给出的程序语句进行分析，结合上下句完成缺失的部分，让程序所要其功能。
37. 程序设计题
0. 考查内容：根据题目要求，使用 C 语言编写程序实现指定功能，主要考查结构化程序设计思想、算法设计能力及代码编写能力。
四、参考教材
C语言程序设计(第5版)，高等教育出版社，苏小红，书号978-7-04-061039-0
[bookmark: _GoBack]
